3-Phase 360-528 Vrms L-L 47-65 Hz Input	Single-Phase 4000 W / 5000 VA Output	Surge-Rated for 5250 W / 6500 VA Transient (15 s)	115 Vrms L-N, 230 Vrms L-N $50 \mathrm{~Hz}, 60 \mathrm{~Hz}$, or 400 Hz Output Options	90\% Full Load Efficiency
Sealed	Constructio	Ultra Low	Weight Compact	

N+M Redundancy

(optional)
SynQor's Military Field-Grade AC Phase/Frequency Changer units are designed for the extreme environmental and demanding electrical conditions of Military/Aerospace applications. SynQor's MAC incorporates field proven high efficiency designs and rugged packaging technologies. This MAC will accept a 3-Phase AC input and change it to a well-conditioned Single-Phase AC output using a two-stage DC link isolated topology. It is designed to comply with a wide range of military standards. Options include a selection of output voltage amplitudes, frequencies and an electronic breaker on the AC output to permit fault-tolerant parallel operation for higher power and/or $\mathrm{N}+\mathrm{M}$ redundant systems.

Combine Units for Higher Power, Voltage, 3-Phase AC Output, and/or Redundancy

Features

- Sealed, weather-proof, shock-proof construction
- Two-stage, DC link isolated topology
- 4000 W (5000 VA) output power; 15 s transient to 5250 W (6500 VA)
- Full power operation: $-40^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
- 3-Phase 360-528 Vrms L-L Δ input (draws balanced currents)
- 47-65 Hz input frequency range
- Pure sinusoidal AC output voltage
- Handles 0.0-1.0 power factor loads and non-linear loads
- Up to 32 units can be combined for higher power, higher voltage, or a 3-Phase AC output
- Capable of $\mathrm{N}+\mathrm{M}$ redundancy with optional "AC Output Electronic Breaker" (R option) and the appropriate configuration cable
- User I/O and Configuration signal ports
- Battle Mode for over-temperature events
- 1 U high rack mount unit (17.00 "W x 22.42 " $\mathrm{D} \times 1.73$ " H)
- Low weight: 33 lbs.

Specification Compliance

MAC-4000 units are designed to meet:

- MIL-STD-1399-300B - Interface Std for Shipboard Systems
- MIL-STD-810G - Environmental Engineering Considerations
- MIL-STD-461F - Electromagnetic Interface

In-Line Manufacturing Process

- AS9100 and IS0 9001 certified facility
- Full component traceability

Options

- 115 Vrms or 230 Vrms AC output
- $50 \mathrm{~Hz}, 60 \mathrm{~Hz}$, or 400 Hz AC output (software selectable)
- Shipboard version with floating output neutral wire
- $\mathrm{N}+1$ Redundancy

Contents

Technical Specification. 2
Block Diagram. 4
Application Section. 5
Mechanical Features . 7
Accessory Options . 9
Ordering Information . 10

ABSOLUTE MAXIMUM RATINGS

Maximum Line Voltage (2 Minute Excursion) 3-Phase, 594 Vrms L-L Line Frequency $0-800 \mathrm{~Hz}$

AC INPUT OPERATING CHARACTERISTICS

Voltage	3-Phase, 360-528 Vrms L-L
Frequency	$47-65 \mathrm{~Hz}$
Input Current Total Harmonic Distortion	<3\% (4000 W load)
Input Power Factor (Distortion Component)	>0.99 (4000 W load)
Input Current Balance (Highest - Lowest)	<2\%
Max. Input Current Per Phase @ 360 Vrms L-L 9.6 Arms (5250 W load)	
AC OUTPUT CHARACTERISTICS	
Continuous Output Power	4000 W (5000 VA)
Transient Output Power (15 seconds)	5250 W (6500 VA)
AC Output Waveform	Pure Sinusoidal
Voltage Line-Neutral	$115 \mathrm{Vrms} \pm 3 \%$
	230 Vrms $\pm 3 \%$
Frequency (software selectable)	$60 \mathrm{~Hz} \pm 0.5 \%$
	$50 \mathrm{~Hz} \pm 0.5 \%$
	$400 \mathrm{~Hz} \pm 0.5 \%$
Output Voltage Total Harmonic Distortion	<2\%
Load Power Factor	0-1.0 (leading or lagging)
Efficiency	90\% (4000 W load)
	88\% (2000 W load)
Single-Phase Output	
Steady State Load Current	43.5 Arms (115 Vrms)
	21.7 Arms (230 Vrms)
Transient Load Current (15 seconds)	56.5 Arms (115 Vrms)
	28.3 Arms (230 Vrms)
Peak Load Current (Min. Shutdown Threshold)	104 Apk (115 Vrms)
	52 Apk (230 Vrms)

Specifications subject to change without notice.

ENVIRONMENTAL CHARACTERISTICS MIL-STD-810G

Temperature Methods 501.5, 502.5	
Operating Ambient Temperature	
Full Rated Power	$-40^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Reduced Power	$+55^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature	$-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Altitude Method 500.5	$0-18,000 \mathrm{ft}$
Operating	$0-40,000 \mathrm{ft}$
Non-operating	

Environmental Tests
Shock/Drop Method 516.6, Procedures 1, 4, 6
Temperature Shock Method 503.5, Procedure 1
Vibration Method 514.6, CAT 5, 7, 8, 9, 24
Fungus Method 508.6

Salt Fog
Sand and Dust \qquad Method 509.5 Method 510.5, Procedures 1, 2
Rain Method 506.5 Procedure 1
Humidity Method 507.5 Procedure 2 Method 528 Procedure 1
Shipboard Equipment

RELIABILITY CHARACTERISTICS MIL-HDBK-217F

MTBF: 450 kHrs
MIL-217F Ground Benign, $\mathrm{Ta}=25^{\circ} \mathrm{C}$

INTERFACE STD FOR SHIPBOARD SYSTEMS MIL-STD-1399B

Type I 440 V 3 -Phase Input Power
Type I 115 V 1-Phase Output Power
(Order F / R Option to Float Output)

ELECTROMAGNETIC CAPABILITY MIL-STD-461F	
CE101-2	$30 \mathrm{~Hz}-10 \mathrm{kHz}$
CE102	$10 \mathrm{kHz}-10 \mathrm{MHz}$
CS101	$30 \mathrm{~Hz}-150 \mathrm{kHz}$
CS106	Pulse Transients
CS114 (Curve \#5)	$10 \mathrm{kHz}-200 \mathrm{MHz}$
CS115	Impulse Excitation
CS116	$10 \mathrm{kHz}-100 \mathrm{MHz}$
RE101 (Navy Limit)	$30 \mathrm{~Hz}-100 \mathrm{kHz}$
RE102 (Navy Topside Limit)	$10 \mathrm{kHz}-1 \mathrm{GHz}$

MECHANICAL CHARACTERISTICS

Chassis Size $17.00^{\prime \prime}$ W x $22.42^{\prime \prime} \mathrm{D} \times 1.73^{\prime \prime} \mathrm{H}(1 \mathrm{U})$
Case Material Aluminum
Weight
33 lbs.
AC Input Connectors
AC Input Connector
CB2-20-4PHA34-FM
AC Output Connectors
115V Single Phase CB2-20-19SXSA34-FM
230V Single Phase CB2-20-19SXSA34-FM

I/O Ports
Configuration I/O Port HD DB15 Male
User I/O Port HD DB15 Female
Ethernet Port Amphenol RJF22N00, Code B
Cooling Exhaust Fans
Sound Pressure Level (SPL)
$64 \mathrm{~dB}(\mathrm{~A})$
Air Flow
$0.92\left(\mathrm{~m}^{3} / \mathrm{min}\right) 32.5 \mathrm{CFM}$
Two fans in system; above specs are for each fan separately.

High Density DB15 Female (15 Pin Connector)

Signal		FiN
TX	2	RS232 DCE Device Transmit
RX	3	RS232 DCE Device Receive
GND	4,5	Ground reference for all digital inputs and outputs
BATTLE_MODE	6	TLL-Input*, pull "low" to engage Battle Mode to disable internal over temperature protection, has internal pull-up to +5 V
$\overline{\text { ACIN_GOOD }}$	7	Open collector* output where "low" indicates AC Input voltage is within range
+5 V	8	Vout with minimal current drive usable as a pull-up voltage for open collector output signals. Load must be < 35 mA
REMOTE_START	12	Drive this line to +5 V with $\geq 5 \mathrm{~mA}$ to enable MAC output
SHUTDOWN	13	Drive this line to +5 V with $\geq 5 \mathrm{~mA}$ to disable MAC output
OUT_OK	14	Open collector* output where "low" indicates AC Output voltage is within range
OVER_TEMP	15	Open collector* output where "low" indicates that the MAC is at or above its maximum temperature

Safety \& Qualifications (Pending)

EN 62368-1

"R" and "F" Options: Paralleling With and Without Redundancy

"F" Option: Expanded Paralleling

With the "F" option, up to 32 MAC units can be placed in parallel. AC output current sharing among the paralleled units is accomplished with a high speed digital configuration cable. The units will share the total load current to within $\pm 2 \%$, and for a splitphase or 3-phase system the AC voltages and AC currents will have phase balance within ± 2 degrees.

While up to 32 " F " option units can be placed in parallel, there is no guarantee of redundancy. A failure of any one unit with the " F " option could cause the AC output bus to collapse.

"R" Option: AC Output Electronic

Breaker

In addition to paralleling up to 32 units, the " R " option also adds an electronic breaker to the AC output of the MAC to permit fault-tolerant, glitch-free parallel operation. With this option, when several MAC units are connected in parallel at their AC outputs and one unit has an internal fault that might otherwise have pulled down the AC output bus, the electronic breaker will disconnect the failed unit so that the remaining paralleled units can continue to power the bus. This allows the system to be "fault-tolerant". The disconnect occurs very quickly so that the AC output voltage will remain within its specified parameters as long as the remaining paralleled units can deliver the total load power. This allows the system to continue running "glitch-free".

The electronic breaker is a single-pole breaker present in the hot-side AC output wire only. The neutral AC output wire is left floating from the MAC chassis to facilitate the paralleling of units into various configurations.

"R" Option: N+M Redundancy

The " R " option makes it possible to set up $\mathrm{N}+1$, or more generally $\mathrm{N}+\mathrm{M}$, redundant systems with a total of up to 32 MAC units. In such a system the failure of one unit (or M units) will not cause the overall system to fail. A failed unit can then be replaced to return the redundancy level to its original design. The replacement unit can be inserted into a live, operating system with proper precautions, but for safety reasons it is recommended that the system be turned off first.

Output Power Cable Connection

MAC systems are formed by first connecting the neutral wires of all the individual units together. For single phase systems, the hot wires are also connected together to form a single bank of MAC units. Splitphase systems are formed by connecting the hot output wires into two banks. One bank will have its output voltage phase-shifted 180° from the other. The phase-shift is determined by the configuration cable. Similarly, 3-phase systems are formed by grouping the hot output wires into three banks, each bank having its output voltage phase-shifted by 120°. Again, the phase shift is determined by the configuration cable. Since 3-phase systems are formed by connecting the neutral wires together and phase shifting the hot wires, the AC outputs must be wye-connected to form 3 -phase systems. Delta connection of MAC units is not supported. However, once a 3-phase system is formed, loads may be connected as wye or delta.

The diagrams on the following page give examples of how multiple MAC units with the " F " or " R " option can be connected to create higher output power singlephase, split-phase, and 3-phase AC systems. Systems with the " R " option will have $\mathrm{N}+\mathrm{M}$ redundancy as long as N units are sufficient for the maximum load power per phase. Note, again, that the maximum total number of units that can be arranged in any of these configurations is 32 .

Configuration Cables

Any system of " F " or " R " option MAC units requires a specific configuration cable that defines the arrangement of MAC units in the system. The configuration cable determines the phase shift for split-phase and 3-phase systems. The cable also provides high speed digital communication for current sharing on each phase.

Configuration cables for two parallel units and three parallel units in a single-phase system, two unit split-phase systems, and three unit three phase systems are available as standard products. Please contact the factory to purchase configuration cables for systems larger than three MAC units.

Synnor
 Single Phase Output System

Split Phase Output System

3-Phase Output System

[^0]

MAC-4000-1U UNIT

Rail Kits	
Slide Rail Kit ${ }^{2}$	
Fixed Bracket Kit ${ }^{3}$	SYN-9002
Power Cables (10' long)	SYN-9031
AC Input (Hardwire)	SYN-9118
AC Output (Hardwire)	SYN-9140
Rackmount Transit Cases	
Transit Case, 3U, Gray, with Casters ${ }^{3}$	SYN-9410
Transit Case, 3U, Gray, No Casters ${ }^{3}$	SYN-9412
Fan Replacement Kit	
Counter-Rotating Replaceable Fan Modules (Pack of 2)	SYN-9452

Notes:

1: Other Options also available, check the website or contact power@synqor.com for further information.
2: Slide Rail Kit (SYN-9002) is not recommended for transit and ruggedized use.
3: Fixed Bracket Kit (SYN-9031) with Transit Case (SYN-9410 or SYN-9412) is required for transit and ruggedized use (qualified to pass MIL-STD-810G Loose Cargo and Transit Drop requirements).

User Communications (I/O) Cables	
HD DB15M to DB9F (RS232, 10')	SYN-9301
HD DB15M to DB15M (RS232 and Digital I/O, 10')	SYN-9305
Mil-Circular to RJ45 (Ethernet, 10')	SYN-9321
Configuration Cables	
HD DB15F to DB15F (2 Units Parallel, ${ }^{\prime}$)	SYN-9341
HD DB15F to DB15F (3 Units Parallel, 6')	SYN-9343
HD DB15F to DB15F (4 Units Parallel 9')	SYN-9344
HD DB15F to DB15F (5 Units Parallel 15')	SYN-9345
HD DB15F to DB15F (2 Units Series, 3')	SYN-9613
HD DB15F to DB15F (3 Units 3 Phase, 6')	SYN-9617

Optional

Rackmount Transit Case

Ordering Information

Contact SynQor for further information and to order:	
Phone:	$978-849-0600$
Toll Free:	$888-567-9596$
Fax:	$978-849-0602$
E-mail:	power@synqor.com
Web:	www.synqor.com
Address:	155 Swanson Road
	Boxborough, MA 01719
	USA

Contact SynQor for further information and to order:
Phone:
Toll Free:
Fax:
E-mail:
Web:
Address:

978-849-0600
888-567-9596
978-849-0602
power@synqor.com
155 Swanson Road
Boxborough, MA 01719
USA

PATENTS

SynQor holds numerous U.S. patents, one or more of which apply to most of its power conversion products. Any that apply to the product(s) listed in this document are identified by markings on the product(s) or on internal components of the product(s) in accordance with U.S. patent laws SynQor's patents include the following:

$6,545,890$	$6,894,468$	$6,896,526$	$6,927,987$	$7,050,309$	$7,085,146$
$7,119,524$	$7,765,687$	$7,787,261$	$8,149,597$	$8,644,027$	

WARRANTY

SynQor offers a one (1) year limited warranty. Complete warranty information is listed on our website or is available upon request from SynQor.

[^0]: *Contact factory for system specific configuration cables

